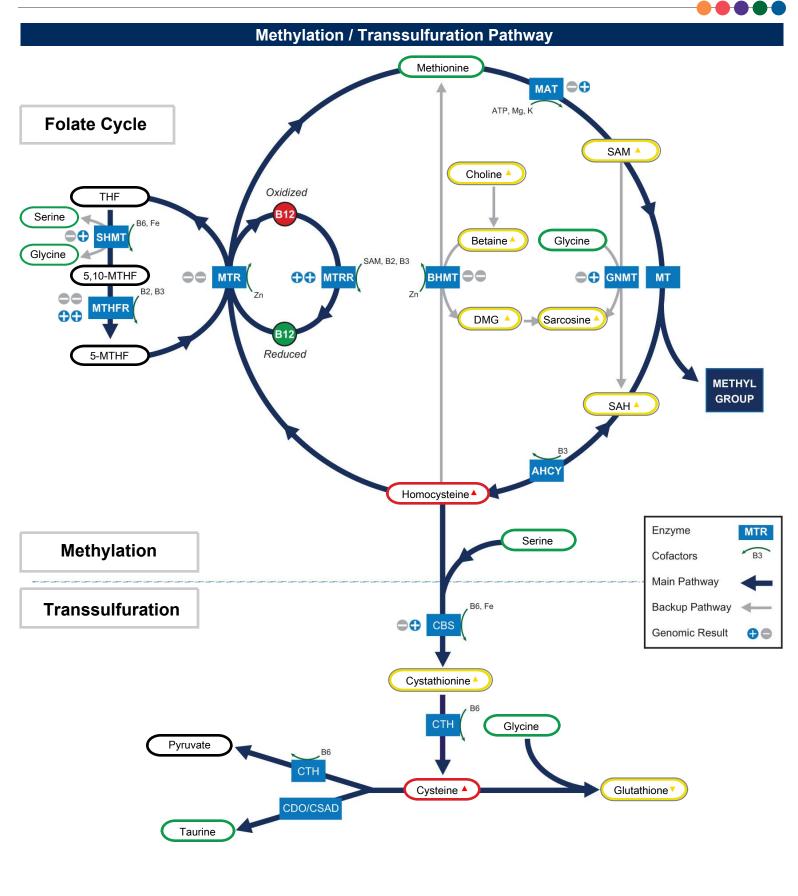


63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

3534 Methylation Panel - Plasma & Whole Blood



METHYLATION PANEL

Patient:			Page 2						
3534 Methylation Panel - Plasm Methodology: LCMSMS & Colorimetric	na & Whol Results micromol/L	le Blo	QUINTILE DISTR			BUTION 4th	5th	Reference Range	
		Met	hylatior	n Capaci	ty				
Ratios									
1. Methylation Index (SAM/SAH Ratio)	3.3		├ ◆		+				2.2-6.4
2. Methylation Balance Ratio	1.04		•	+	+				1.03-1.20
3. Met/Sulf Balance Ratio	0.63				+				0.55-0.64
4. Betaine/Choline Ratio	5.2				+	•			2.6-7.7
Methyl Group Donors									
5. S-adenosylmethionine (SAM)	137				+	-	+		65-150 nanomol/L
6. Methionine	30				+ •				23-38
7. Choline	12.0				+		+		5.2-13.0
8. Betaine	62		-		-		- •		21-71
9. Serine	125				-	•			91-161
Methyl Group Metabolites									
10. S-adenosylhomocysteine (SAH)	41		-		+				16-41 nanomol/L
11. Homocysteine †	12.0	н						•	3.7-10.4
12. Dimethylglycine (DMG)	5.0		-		-				1.6-5.0
13. Sarcosine	6,485		-		-	-	+		3,670-6,743 nanomol/L
14. Glycine	317				-		•		181-440
Transsulfuration Metabolites									
15. Cystathionine	321		-	-	+	-	+ +		74-369 nanomol/L
16. Cyst(e)ine	439 	н			-			•	271-392
17. Taurine	104		-		-		•		50-139
18. Glutathione †	836				•				>=669

†These results are not represented by quintile values.

Tests were developed and their performance characteristics determined by Genova Diagnostics. Unless otherwise noted with •, the assays have not been cleared by the U.S. Food and Drug Administration.

Energy Production

Detoxification

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA Sequencing BHMT G742A **Betaine-homocysteine S-methyltransferase** Betaine-homocysteine methyltransferase (BHMT) is the enzyme responsible for remethylation of Your Genotype: homocysteine via an alternate pathway using betaine as a methyl donor.⁵ BHMT acts as a backup pathway to maintain SAM levels and is expressed primarily in the liver and kidney.⁶ Allele 2 Allele 1 **Health Implications** The BHMT G742A polymorphism results in increased BHMT activity (also referred Wild Type -Wild Type to as "upregulation"). Upregulation of BHMT may lead to lower levels of homocysteine as well as less dependency on folate and vitamin B-12 as methyl Potential Impact: donors. No Upregulation Because this BHMT polymorphism results in increased activity, research suggests Genotypes Amino Acid that this SNP is protective against many of the clinical conditions related to GG Arg Arg elevated homocysteine and folate deficiency. GA Arg Gln This G742A SNP has been associated with reduced all-cause mortality in breast A A GIn GIn cancer and decreased birth defect risk in some studies.1-4 Amino Acid Position: 239 · However, the overuse of choline as a substrate for methylation may have a negative metabolic consequence, because choline is needed for many other Arginine to Glutamine processes in the body. $cGA \rightarrow cAA$ For example, SNPs for this enzyme may result in decreased choline availability for the PEMT pathway, which is responsible for acetylcholine and phospholipid DNA Position: 821 synthesis.⁵ SNP Abnormal choline metabolism may be associated with congenital abnormalities such as Down syndrome and neural tube defects.7 These risks may be GAGGCTGCC C(Gor A)ACTGAAAGCT exacerbated by homozygous positive findings combined with low folate intake. Amino Acid Codon **Clinical Considerations** Rs Number: rs3733890 Check choline and betaine levels; consider supplementation if applicable. Ensure adequate dietary choline intake. Location: Chromosome 5g14.1 · Assess likelihood of zinc insufficiency; evaluate plasma zinc and zinc/copper ratio. **Frequency:** Assess SAM/SAH ratio and Methyl Balance Ratio to rule out excessive SAM production. Population GA GG AA Category EUR 48% 41% 11% References 1. Boyles AL, et al. Environ Health Perspect. 2006;114(10):1547-1552. EAS 52% 41% 7% 2. Shaw GM, et al. BMC Med Gen. 2009;10:49. 3. Mostowska A, et al. J Med Gen. 2010;47(12):809-815. 4% AFR 55% 41% 4. da Costa KA, et al. *FASEB J.* 2014;28(7):2970-2978. 5. Obeid R. Nutrients. 2013;5(9):3481. AMR 32% 52% 16% Sunden SL, et al. Arch Biochem Biophys. 1997;345(1):171-174. 6. Jaiswal SK, et al. Eur J Clin Nutr. 2017;71(1):45-50. 52% 43% 5% 7. SAS *Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below: EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

C	BS C69	9Т		Cystathionine beta-synthase					
Yo Allele 1	ur Genot	ype: Allele	2	Cystathionine beta-synthase (CBS) is the enzyme responsible for homocysteine's irreversible conversion to cystathionine. This is the first step in the transsulfuration pathway that ultimately leads to glutathione production.					
^				Health Implications					
				• The CBS enzyme is strongly regulated by the availability of SAM. Adequate SAM					
Wild Type -		Variant	+	levels leads to an upregulation of the CBS enzyme, allowing homocysteine to be irreversibly committed to the transsulfuration pathway. ¹					
Po	tential Impa	act:							
Up	regulat	ion		 Most literature suggests that CBS C699T polymorphisms result in upregulation of CBS activity favoring transsulfuration and lowering homocysteine.^{2,3} 					
Genotypes		Amino A							
СС		Tyr Ty	r	 One study demonstrated the opposite effect in a Chinese population where CBS polymorphisms resulted in increased plasma homocysteine.⁴ Therefore, debate 					
C T T T		Tyr Ty Tyr Ty		exists regarding the impact of C699T polymorphism on enzyme activity.					
-	sition: 23 the to Tyr \rightarrow TAT	-		 Despite the lack of agreement on enzyme activity, multiple studies demonstrate clinical associations with the C699T polymorphism. These include: Reduced risk of lymphoma ⁵ Reduced risk of venous disease ^{6,7} Protective effects against deep vein thrombosis ⁶ 					
DNA Desition	044			 Decreased risk of coronary artery disease ⁸ 					
DNA Position:				Clinical Considerations					
tggctcac TA	SNP ∳ \(CorT)	GACACCA	ACCG	 Since this polymorphism is mostly considered to be protective, evaluate homocysteine levels in patients with "wild-type" (negative) CBS genotypes and address causes of elevated homocysteine. 					
Ami Rs Number: rs2	no Acid Co 234706	don		 Some clinicians consider CBS polymorphisms to potentially "drain" methylation metabolites into the transsulfuration cycle. Evaluate overall methyl balance ratios and consider methylation support if warranted. 					
Location: Chro	mosome 2	21q22.3		Reduce levels of oxidative stress which further upregulate the CBS enzyme.					
				 Evaluate other transsulfuration metabolites (taurine, cystathionine, and glutathione) to determine if upregulation of CBS is likely. Assess met/sulf balance ratio. 					
* Frequency:				• Ensure adequate supply of vitamin B-6 and iron, as these are cofactors for the					
Population Category	сс	СТ	тт	CBS enzyme.					
EUR	42%	48%	10%	References 1. Stabler SP, et al. <i>Blood.</i> 1993;81(12):3404-3413.					
EAS	95%	5%	<1%	2. DeStefano Vea. Ann Hum Genet. 1998;62(6):481-490.					
AFR	59%	33%	8%	 Aras Ö, et al. <i>Clin Genet</i>. 2000;58(6):455-459. Wu X, et al. <i>Hered Cancer Clin Pract</i>. 2014;12(1):2. 					
				5. Li Q, et al. Cancer Causes Control : CCC. 2013;24(10):1875-1884.					
AMR	72%	25%	3%	 Ayala C, et al. <i>Biomedica</i>. 2010;30(2):259-267. Hendrix P, et al. <i>J Neurosurg</i>. 2017:1-7. 					
SAS	44%	46%	10%	8. Kruger WD, et al. <i>Mol Genet Metab.</i> 2000;70(1):53-60.					

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

GN	MT C12	289T		Glycine N-methyltransferase				
Your Genotype: Allele 1 Allele 2			0	Glycine n-methyltransferase (GNMT) is an enzyme that plays a critical role in the disposal of excess s-adenosylmethionine (SAM), which is the body's main methyl donor. GNMT removes methyl groups from SAM by conjugating them with glycine to form the byproduct sarcosine.				
Allele I		Allele	2					
С				Health Implications				
Wild Type -		Variant	+	 GNMT acts as a SAM/SAH buffer by disposing excess SAM through conjugation with glycine. This process is downregulated in response to low 5-MTHF and SAM levels. Increased GNMT activity could potentially lead to increased sarcosine 				
	tential Impa regulat			levels, which has been associated with prostate cancer risk in several studies. ¹⁻³ • However, in one study of Taiwanese men (where GNMT polymorphism is less				
Genotypes		Amino A	Acid	common), GNMT polymorphism showed a protective effect on prostate canc risk, which highlights the differences in SNP frequencies in different				
СС		Non-Co	oding	populations. ⁴				
CT		Non-Co	ding					
TT Non-Coding Amino Acid Position: Untranslated Region				 The C1289T polymorphism results in upregulation of the GNMT enzyme which increases the rate of SAM disposal and sarcosine creation. This may limit SAM availability for methylation reactions and reduce its regulatory effects on the transsulfuration and/or folate pathways. 				
DNA Position:	4962 SNP ♥			 GNMT is also involved in detoxification and antioxidant pathways. This may play role in the increased cancer risk demonstrated in homozygous negative individua and in animal models. GNMT SNPs have been shown to play a role in elevating plasma homocysteine, particularly with folate-restriction.⁵ 				
AGTGCTTATG	(C orT)	TTTAAGT	GCG	Clinical Considerations				
				• Evaluate methylation balance, SAM/SAH, and sarcosine levels.				
Rs Number: rs′	10948059	I		• Ensure adequate levels of glycine, as this is a substrate for the reaction catalyzed by GNMT and is also involved in glutathione synthesis.				
Location: Chro	mosome (6p21.1						
Frequency:								
Population Category	сс	ст	тт					
EUR	29%	47%	24%					
EAS	70%	28%	2%	References				
AFR	23%	43%	34%	1. Lucarelli G, et al. Prostate. 2012;72(15):1611-1621.				
AMR	50%	44%	6%	 Jentzmik F, et al. <i>Eur Urol</i>. 2010;58(1):12-18. Sreekumar A, et al. <i>Nature</i>. 2009;457(7231):910. 				
	36%	47%	17%	4. Chen M, et al. <i>PloS one</i> . 2014;9(5):e94683.				

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish **EAS (East Asian):** Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) **AFR (African):** Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA S MAT	1A D18	777A		Methionine adenosyltransferase				
Yo	ur Geno	type:	2	Methionine adenosyltransferase (MAT) is the enzyme that catalyzes the conversion of methionine into the body's main methyl donor, s-adenosylmethionine (SAM). This enzyme requires magnesium as a cofactor and is downregulated by oxidative stress, such as alcohol and free radical damage.				
Allele 1		Allele	2					
G		A		Health Implications				
Wild Type -		Variant	+	 Methionine adenosyltransferase (MAT) activity is critical to methylation. There are a few MAT1A genetic polymorphisms studied that lead to MAT1A deficiency (also known as Muddle Disease) but this condition is outcomely received. 				
Pot	tential Imp	act:		known as Mudd's Disease), but this condition is extremely rare.				
Dow	nregul	ation		 The D18777A SNP is fairly common in the human population and has associations with cardiovascular disease risk.¹ 				
Genotypes		Amino A	cid					
GG		Non-Co	ding	Although literature is scant on this mutation, some studies have demonstrated				
GA		Non-Co	ding	higher homocysteine levels with this polymorphism. ² Another study also				
AA		Non-Co	ding	demonstrated that this correlation was modulated by overall dietary fat intake. ³				
Amino Acid Pos	 sition: ∪	ntranslate	d Region	 Another study demonstrated that the D18777A SNP was associated with higher rates of stroke independent of homocysteine levels, which was hypothesized to b due to methylation activity impairment.¹ 				
				Clinical Considerations				
DNA Position:	23777			 Evaluate methylation balance, SAM/SAH, and sarcosine levels. 				
GCTTTTCTCT	SNP ♥ (GorA	TAATGTO	TCA	• Reduce levels of oxidative stress, such as free radical exposure and alcohol intake as these can further impair the MAT1A enzyme.				
				• Ensure adequate levels of MAT1A cofactors such as magnesium and potassium. Consider testing RBC magnesium an potassium.				
Rs Number: rs3		10q22.3		• Patients with this polymorphism may have higher homocysteine in response to dietary fat intake than those without. ³ Monitor advanced cardiovascular risk markers if clinically appropriate.				
* Frequency:								
Population Category	GG	GA	AA					
EUR	50%	43%	7%					
EAS	36%	48%	16%					
AFR	62%	34%	4%	Deferment				
AMR	52%	40%	8%	References 1. Lai CQ, et al. <i>Am J Clin Nutr.</i> 2010;91(5):1377-1386.				
SAS	42%	45%	13%	 Beagle B, et al. J Nutr. 2005;135(12):2780-2785. Huang T, et al. Nutr Metab Cardiovasc Dis. 2012;22(4):362-368. 				

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below: **EUR (European):** Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish **EAS (East Asian):** Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) **AFR (African):** Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean **AMR (Ad Mixed American):** Mexican, Puerto Rican, Colombian, Peruvian **SAS (South Asian):** Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA									
M'	TR A275	56G		Methionine synthase					
Yc Allele 1	our Genot	ype: Allele	0	Methionine synthase (MS/MTR) is responsible for converting homocysteine back into methionine by using 5-MTHF as a methyl donor. This reaction requires zinc and active B-12 (methylcobalamin) as cofactors and is the main pathway responsible for homocysteine recycling in every cell.					
Allele I		Allele	2						
Α		Α		ealth Implications					
Wild Type -		Wild Ty	rpe -	 The A2756G polymorphism is the most common MTR SNP discussed in the literature. 					
Po	otential Impa	act:							
No l	Jpregu	lation		 It is generally accepted that this SNP upregulates the MTR enzyme leading to lower homocysteine levels.¹ 					
Genotypes		Amino A	Acid						
AA		Asp A	sp	• The impact of this SNP on global DNA methylation is debated in the literature,					
AG		Asp G	ly	however clinical associations with the A2756G polymorphism include congenital birth defects such as spina bifida, cleft lip/palate, and cardiac defects. ²⁻⁴					
GG		Gly G	ly						
Amino Acid Po	Amino Acid Position: 919			 One hypothesis is that as the MTR enzyme is at the junction between the folat pathway and the methylation pathway, upregulation of MTR may shunt folate groups to the methylation cycle at the expense of other folate needs, such as 					
Aspart	Aspartate to Glycine			purine/nucleotide synthesis.					
-	$GAC \rightarrow GGC$			 Several epidemiological studies on MTR polymorphism have demonstrated risk associations with various cancers, evidence remains controversial.⁵⁻⁷ Many of 					
DNA Position:	DNA Position: 3179 SNP			these risk associations appear to be population/ethnicity specific, which could be due to gene-gene interactions with MTRR and MTHFR.					
ATTAGACAG			TOAC	Clinical Considerations					
			IGAG	Compare any MTR polymorphisms with MTHFR and MTRR genetic results.					
	ino Acid Co	don		 Evaluate homocysteine, SAM/SAH ratio, and monitor biomarkers for vitamin B-12 and folate. 					
Rs Number: rs	1805087								
Location: Chro	omosome '	1q43		 Ensure adequate dietary intake of folate and vitamin B-12. 					
* Frequency:									
Population Category	AA	A G	GG						
EUR	69%	30%	1%	References					
EAS	72%	25%	3%	 Ho V, et al. <i>Genes Nutr.</i> 2013;8(6):571-580. Wang W, et al. <i>Genet Test Mol Biomarkers</i>. 2016;20(6):297-303. 					
AFR	47%	42%	11%	3. Klerk M, et al. <i>Thromb Res</i> . 2003;110(2-3):87-91.					
AMR	65%	33%	2%	 Doolin MT, et al. <i>Am J Hum Genet.</i> 2002;71(5):1222-1226. Bleich S, et al. <i>Epigenomics.</i> 2014;6(6):585-591. 					
646	400/	470/	110/	6. Hosseini M. <i>Pol J of Pathol</i> . 2013;64(3):191-195.					

 11%
 7.
 Jiang-hua Q, et al.
 Tumour Biol.
 2013;64(3):191-195.

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

42%

SAS

47%

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Methodology: DNA S	, -									
	TRR A6			Methionine synthase reductase						
Yo	ur Genot	type:		Methionine synthase reductase (MTRR) is an enzyme that works in cooperation with methionine synthase (MTR) by reducing oxidized forms of vitamin B-12 to be reused. This allows MTR to continue to convert						
Allele 1		Allele	2	homocysteine back into methionine.						
				Health Implications						
G		G		Health Implications						
Variant +		Variant	+	• MTRR polymorphisms result in decreased enzyme activity and therefore a						
			•	decreased capacity to recycle oxidized cobalamin (vitamin B-12). This decreased enzyme activity can affect methylation capacity by limiting the amount of active						
	tential Impa			B-12 available for homocysteine conversion. ¹						
Dow	nregul	ation								
Capaturaa		Amino A	\ oid	• Both MTRR polymorphisms can result in homocysteine elevation, independent of						
Genotypes		lle lle	ACIU	folate, B-12, or B-6 levels. ²						
AA										
AG		lle Me	et	• The A66G polymorphism is the most commonly studied MTRR SNP. It has been						
GG		Met N	let	associated with numerous clinical conditions, such as various cancers, birth defects, metabolic syndrome, mood disorder, and elevated homocysteine. ³⁻⁵						
				delects, metabolic syndrome, mood disorder, and elevated homocysteme.						
Amino Acid Pos	sition: 22	2		The A66G polymorphism has also been shown to correlate with global DNA						
				hypomethylation, which is a direct marker for methylation impairment.						
Isoleuc	Isoleucine to Methionine									
ATA	AT $A \rightarrow$ AT G			Clinical Considerations						
DNA Position:	203			Compare any MTRR polymorphisms with MTHFR and MTR genetic results						
	SNP			Evaluate homocysteine, SAM/SAH ratio, and monitor biomarkers for vitamin B-12						
	U SINF			and folate.						
		TGTGAG	GCAAG	Ensure adamusta distanciatales of folgto and citarcia D 40, consider explotion with						
	•	ĺ		 Ensure adequate dietary intake of folate and vitamin B-12, consider repletion with methylcobalamin in these individuals. 						
Ami	no Acid Co	don								
				• Ensure adequate vitamin B-2 and B-3 status, as they are cofactors for the MTR enzyme.						
Rs Number: rs	1801394									
Location: Chro	mosome {	5p15.31								
		•		• Assess antioxidant capacity, as oxidative stress impacts levels of methylcobalamin.						
* Frequency:										
Population	• •		GG							
Category	AA	A G	66							
EUR	38%	34%	28%							
EAS	54%	37%	9%	References						
AFR	59%	36%	5%	 Olteanu H, et al. <i>Biochemistry</i>. 2002;41(45):13378-13385. Gaughan DJ, et al. <i>Atherosclerosis</i>. 2001;157(2):451-456. 						
AMR	26%	57%	17%	3. Jamerson BD, et al. Int J Geriatr Psychiatry. 2013;28(9):925-932.						
SAS	N/A	N/A	N/A	 Hassan FM, et al. <i>Gene</i>. 2017;629:59-63. Guo QN, et al. <i>BioMed Res Int</i> 2017;2017:3043476. 						
				S project as sourced from NCBI dbSNP. The population categories are listed below:						

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

SHI	MT1 C12	240T		Serine hydroxymethyltransferase 1					
Your Genotype:			Serine hydroxymethyltransferase 1 (SHMT) is responsible for maintaining a relative balance of folate groups between the methylation cycle and the folate cycle. It uses serine and glycine to exchange methyl						
Allele 1	Allele 1 Allele 2			groups between THF and 5,10-MTHF as needed.					
С		Т		Health Implications					
Wild Type -	Wild Type - Variant + Potential Impact:			 SHMT1 is a bidirectional enzyme that can create a short-cut for methylation of homocysteine back to methionine through rapid creation of 5-MTHF. However, SHMT generally gives metabolic priority to nucleotide synthesis over SAM 					
	nregul			synthesis. ¹					
Genotypes C C C T T T	Amino Acid C C Leu Leu C T Leu Phe		eu he	• The C1240T polymorphism alters the SHMT1 enzyme function to favor the folate cycle over the methylation cycle to an even greater extent. Ultimately, this imbalance can cause reduced circulating folate (5-MTHF) levels and increased homocysteine. ²					
Amino Acid Po	sition: 47	74		 This SNP adversely affects DNA synthesis, methylation systems, and causes genome instability. It eventually leads to oncogene overexpression and tumor suppressor gene inactivation.^{1,3} 					
	Leucine to Phenylalanine $C_{TC} \rightarrow T_{TC}$			 The C1240T SNP has been associated with several clinical conditions, including various cancers and exacerbation of cardiovascular disease risk associated with MTHFR.⁴⁻⁶ 					
DNA Position:	1631								
	SNP			Clinical Considerations					
CTTCGCCTCT	(CorT)		стст	• Evaluate MTHFR SNP which may exacerbate CVD risk and low folate status.					
Ami	no Acid Co	odon		 Consider supplementation with 5-MTHF and other methyl donors if high homocysteine or low SAM/SAH ratio. 					
Rs Number: rs		17p11.2		Consider additional B-vitamin supplementation to support MTHFR enzyme, s vitamins B-2, B-3, and B-12.					
* Frequency:									
Population Category	сс	СТ	π						
EUR	45%	43%	12%						
EAS	87%	13%	<1%	References					
AFR	33%	47%	20%	 Choi S-W, Mason JB. <i>J Nutr.</i> 2000;130(2):129-132. Lightfoot TJ, et al. <i>Cancer Epidemiol Biomarkers Prev.</i> 2005;14(12):2999-3003. 					
AMR	59%	41%	<1%	 Zijno A, et al. <i>Carcinogenesis</i>. 2003;24(6):1097-1103. Wang Y-W, et al. <i>Chin J Cancer</i>. 2015;34(12):573-582. 					
				5. Carmona B, et al. <i>Am J Clin Nutr.</i> 2008;88(5):1413-1418.					

 N/A
 5.
 Carmona B, et al. Am J Clin Nutr. 2008;88(5):1413-1418.

 6.
 Wernimont SM, et al. J Nutr. 2011;141(2):255-260.

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

N/A

N/A

SAS

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

30	Aa	a-(or	1 ľ	VI	e	τn	y	a	.10	ļ
160	dala	~	~	11	C	· ~ ·	~	~ ~	in	~	

MT	HFR C6	577T		5,10-methylenetetrahydrofolate reductase						
You Allele 1	ur Genot	type: Allele	2	Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme which converts 5,10- methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). This step activates folate to be used for homocysteine (Hcy) conversion to methionine, instead of nucleotide synthesis.						
С		С		 Health Implications The C677T polymorphism downregulates enzymatic activity, which can limit methylation reactions in the body. The C677T polymorphism results in an 						
Wild Type -		Wild Ty	pe -	increased risk of high homocysteine and an increased tendency for lower folate levels. ^{1,2}						
	ential Impa									
NO DO	wnreg	ulation		 Homozygosity for 677 (+/+) results in 60-70% reduction in MTHFR enzyme activity. Heterozygosity for 677 (-/+) results in 30-40% reduction in MTHFR enzyme activity 						
Genotypes		Amino A	Acid							
CC		Ala Al	а	Lower levels of B-vitamin and folate increase the risk of elevated homocysteine						
СТ		Ala Va	al	related to MTHFR SNPs. ²						
TT		Val Va	al	 Homozygous C677T subjects have higher Hcy levels, while heterozygous subjects have mildly raised Hcy levels compared to controls.⁴ 						
Amino Acid Pos	ition: 22	22								
Alanin	e to Val	ine		MTHFR C677T SNPs have been associated with many disease processes including:						
GCc→GTc				 Cardiovascular disease 5-7 						
GOC		C		 Depression and schizophrenia ^{8,9} 						
DNA Position: 8	394			 Increased risk of birth defects and Down's syndrome ¹⁰ 						
	SNP			Psoriasis						
	¥			◦ Diabetes						
TCTGCGGGA G		C GATTT	CATC	 Parkinson's disease 						
1	(, 		Various cancers ⁴						
A main		dan		 Clinical Considerations Ensure adequate intake of dark-green leafy vegetables and other B vitamin-rich 						
	no Acid Co	laon		foods.						
Rs Number: rs1				 Evaluate homocysteine, SAM, and SAH levels. 						
Location: Chror	nosome '	1p36.22								
				 Supplementation with methylated folate and folate-rich foods may help lower Hcy and mitigate risk.¹¹ 						
Frequency:				 Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors). 						
Population	СС	СТ	тт	References 1. Yang Q, et al. <i>Am J Clin Nutr.</i> 2012;95(5):1245-1253.						
Category				 Garcia-Minguillan CJ, et al. <i>Genes Nutr</i> 2014;9(6):435. 						
EUR	47%	44%	9%	3. Weisberg IS, et al. <i>Atherosclerosis</i> . 2001;156(2):409-415.						
EAS	37%	47%	16%	 Liew S-C, et al. <i>Eur J Med Genet</i>. 2015;58(1):1-10. Zhang P, et al. <i>Angiology</i>. 2015;66(5):422-432. 						
AFR	81%	19%	<1%	 Yang KM, et al. <i>Biomed Rep</i>. 2014;2(5):699-708. Cui T. <i>Int J Neurosci</i>. 2015. 						
AMR	32%	52%	16%	 Wu YL, et al. <i>Prog Neuropsychopharmacol Biol Psychiatry</i>. 2013;46:78-85. Hu CY, et al. <i>J Neural Transm (Vienna)</i>. 2015;122(2):307-320. 						
SAS	68%	30%	2%	10. Yadav U, et al. <i>Metab Brain Dis</i> . 2015;30(1):7-24.						
	DA%	.3U%	/%	11. Zhao M, et al. <i>Stroke</i> . 2017;48(5):1183-1190.						

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample Methodology: DNA Sequencing

MTHFR A1298C 5,10-methylenetetrahydrofolate reductase Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme which converts 5,10-Your Genotype: methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). This step activates folate to be used for homocysteine conversion to methionine, instead of nucleotide synthesis. Allele 1 Allele 2 **Health Implications** The A1298C homozygous SNP mutation downregulates enzyme activity but may not independently affect folate or homocysteine levels.¹ However, a combined Variant + Variant + heterozygosity for both 677T and 1298C mutations does result in significant Potential Impact: plasma homocysteine elevation.^{1,2} Downregulation Heterozygosity for only 1298 (-/+) has not been shown to affect overall MTHFR Amino Acid Genotypes enzyme activity, however, homozygosity for 1298 (+/+) results in 30-40% reduction Glu Glu in MTHFR enzyme activity.3 ΑA AC Glu Ala MTHFR A1298C SNPs have been associated with many disease processes CC Ala Ala including: Cardiovascular disease 4-6 Male infertility ^{7,8} Amino Acid Position: 429 Increased risk of birth defects ⁹ Glutamate to Alanine Certain cancer types¹⁰⁻¹² $GAA \rightarrow GCA$ **Clinical Considerations** DNA Position: 1515 Ensure adequate intake of dark-green leafy vegetables and other B vitamin-rich foods. SNP ACCAGTGAA **G(A** or **C)** A AGTGTCTTT · Evaluate homocysteine, SAM, and SAH levels. Supplementation with methylated folate and folate-rich foods may help lower Hcy Amino Acid Codon and mitigate risk.13 Rs Number: rs1801131 Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors). Location: Chromosome 1p36.22 References **Frequency:** 1. Isotalo PA, et al. Am J Hum Genet. 2000;67(4):986-990. 2. van der Put NM, et al. Am J Hum Genet. 1998;62(5):1044-1051. Population Weisberg IS, et al. Atherosclerosis. 2001;156(2):409-415. AA AC CC 3. Category 4. Kang S, et al. J Clin Neurosci. 2014;21(2):198-202. 5. Lv Q, et al. Genet Mol Res. 2013;12(4):6882-6894. EUR 43% 45% 12% 6. Zhang MJ, et al. Cerebrovasc Dis. 2014;38(6):425-432. 7. Eloualid A, et al. PloS one. 2012;7(3):e34111. EAS 63% 33% 4% 8. Shen O, et al. Ann Hum Genet. 2012;76(1):25-32. 9. Xuan C, et al. Sci Rep. 2014;4:7311. AFR 78% 21% 1% 10. Qi X, et al. Tumour Biol. 2014;35(3):1757-1762. 4% 11. Qi YH, et al. Clin Res Hepatol Gastroenterol. 2014;38(2):172-180. AMR 62% 34% 12. Qin X, et al. PloS one. 2013;8(2):e56070. 44% 17% 39% SAS 13. Zhao M, et al. Stroke. 2017;48(5):1183-1190. *Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below: EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

CO	MT V15	8M		Catechol-O-methyltransferase					
	ur Genot		_	Catechol-O-Methyltransferase (COMT) is a key enzyme involved in the deactivation of catechol compounds, including catecholamines, catechol estrogens, catechol drugs such as L-DOPA, and various chemicals and					
Allele 1		Allele	2	toxins such as aryl hydrocarbons.					
G		Α		 Health Implications COMT polymorphisms result in decreased enzyme activity. Individuals with COI SNPs may have an increased risk of inefficient methylation of catecholamines, 					
Wild Type -		Variant	+	estrogens, and toxins. ^{1,2}					
	ential Impa			• The most common genotype of COMT in most populations is heterozygous (+/-). Individuals with a homozygous positive (+/+) genotype for COMT have a 3-4-fold					
Genotypes G G G A A A		Amino A Val Va Val Me Met M	al et	 reduction in COMT activity. COMT polymorphisms have been implicated in mood disturbances such as anxiety, panic disorder, eating disorder, aggressiveness, anger, alcoholism, and severity of bipolar disorder.³⁻⁵ 					
Valine	Ι Amino Acid Position: 158 <i>Valine to Methionine</i> GTG →ATG			 COMT polymorphism has been implicated in risk of breast cancer, particularly in women with prolonged estrogen exposure;^{6,7} or in women with low folate and high homocysteine.⁸ Also, COMT SNPs have been shown to correlate with higher estrogen levels with estrogen replacement therapy.⁹ 					
	DNA Position: 721			 Fibromyalgia and migraine have been associated with COMT polymorphisms as well.^{10,11} 					
	SNP			Clinical Considerations					
ے Amir Rs Number: rs	TTTCGCTGGC (Gor A)TGAAGGACAA Amino Acid Codon Rs Number: rs4680 Location: Chromosome 38.p12			 Evaluate considerations Evaluate methylation pathway to locate any potential backup. Ensure adequate B6, B12, folate, magnesium, betaine, and methionine to ensure adequate SAM production. SAM-e supplementation may be considered, as it is the cofactor for COMT, however, this therapy is contraindicated in bipolar disorder. Minimize stress, since catecholamine levels may already be high. Make sure to appropriately monitor estrogen levels and estrogen metabolites, especially if your patient is on estrogen replacement therapy. Consider additional antioxidant support, especially if low levels of glutathione are reported. 					
* Frequency:									
Population Category	GG	GA	AA	References 1. Lachman et al. Pharmacogenetics. 1996;6(3):243-250. 2. Mannisto et al. Pharmacol Rev. 1999;51(4):593-628.					
EUR	22%	53%	25%	 Woo JM, et al. Am J Psychol. 2002;159(10):1785-1787. Rujescu D, et al. Biol Psychiatry. 2003;54(1):34-39. 					
EAS	43%	47%	10%	 5. Papolos DF, et al. <i>Mol Psychiatry</i>. 1998;3(4):346-349. 6. Huang CS, et al. <i>Cancer Res</i>. 1999;59(19):4870-4875. 					
AFR	46%	45%	9%	 Thang Co, et al. <i>Cancer Res.</i> 1997;57(24):5493-5497. Boodman JE, et al. <i>Carcinogenesis</i>. 2001;22(10):1661-1665. 					
AMR	54%	37%	8%	9. Worda C, et al. <i>Hum Reprod</i> . 2003;18(2):262-266.					
SAS	37%	41%	22%	10. Gursoy S, et al. <i>RheumatolInt</i> . 2003;23(3):104-107. 11. Emin Erdal M, et al. <i>Brain Res Mol Brain Res</i> . 2001;94(1-2):193-196.					

*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below **EUR (European):** Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish **EAS (East Asian):** Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) **AFR (African):** Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean **AMR (Ad Mixed American):** Mexican, Puerto Rican, Colombian, Peruvian **SAS (South Asian):** Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3535 Add-on Methylation Genomics - Buccal sample

Commentary

This test has been developed and its performance characteristics determined by Genova Diagnostics, Inc. It has not been cleared by the U.S. Food and Drug Administration.

Commentary is provided to the practitioner for educational purposes, and should not be interpreted as diagnostic or treatment recommendations. Diagnosis and treatment decisions are the responsibility of the practitioner.

The accuracy of genetic testing is not 100%. Results of genetic tests should be taken in the context of clinical representation and familial risk. The prevalence and significance of some allelic variations may be population specific.

Any positive findings in your patient's test indicate genetic predisposition that could affect physiologic function and risk of disease. We do not measure every possible genetic variation. Your patient may have additional risk that is not measured by this test. Negative findings do not imply that your patient is risk-free.

DNA sequencing is used to detect polymorphisms in the patient's DNA sample. The sensitivity and specificity of this assay is <100%.